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Abstract Flow structure and convective heat transfer in a plane channel with in-line mounted
rectangular bars have been investigated for different bar sizes in the Reynolds number range
corresponding to steady laminar flow to unsteady transitional flow. Numerical results are reported
for the thermal entrance region with six in-line mounted bars and for the case with spatially
periodic mounted bars. Data for heat transfer and pressure drop are presented for
100 # Re # 1,000 and bar heights 0.24 # d/H # 0.48. The unsteady Navier-Stokes equations
and the energy equation have been solved by a finite-volume code with staggered grids combined
with SIMPLEC pressure correction. Flow and heat transfer characteristics in the different rows
are strongly dependent on Re and d/H. The flow structure and temperature field around the sixth
row are compared qualitatively well with those calculated with periodic boundary conditions,
however, the comparison of mean Nusselt number and friction factor shows differences for high
Reynolds numbers.
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Nomenclature
C ¼ Courant number, UmaxDt/DX
Cf1 ¼ skin friction coefficient on bottom

wall, tw1/(1/2rU0
2)

Cf2 ¼ skin friction coefficient on top wall,
tw2/(1/2rU0

2)
Cd ¼ drag coefficient on bar, D/(1/2rU0

2 d)
Cl ¼ lift coefficient on bar, L/(1/2rU0

2 d)
d ¼ bar height
D ¼ drag
f ¼ friction factor, (H/2P) Dp/(1/2rU0

2)
F ¼ eddy shedding frequency
h ¼ heat transfer coefficient
H ¼ channel height
k ¼ thermal conductivity
L ¼ lift
Nu ¼ averaged Nusselt number, hH/k
P ¼ spatial pitch
p ¼ pressure
PBC ¼ periodic boundary conditions
Pr ¼ Prandtl number, n/a
Re ¼ channel Reynolds number, U0H/n
S ¼ Strouhal number, Fd/U0

T0 ¼ reference temperature
TW ¼ channel wall temperature
TB ¼ bulk temperature
u ¼ Cartesian velocity component in

x-direction
v ¼ Cartesian velocity component in

y-direction
U0 ¼ channel-averaged velocity at inlet
U ¼ non-dimensional Cartesian velocity

component, u/U0

V ¼ non-dimensional Cartesian velocity
component, v/U0

X ¼ non-dimensional
Cartesian coordinate, x/H

Y ¼ non-dimensional Cartesian
coordinate, y/H

Greek symbols
a ¼ thermal diffusivity
b ¼ non-dimensional mean pressure

gradient
u ¼ non-dimensional temperature, T/T0
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1. Introduction
Fluid flow and heat transfer in plane channels are present in the cooling of electronic
components and compact heat exchangers. An analysis shows that the channel
Reynolds numbers by air cooled components are small. Often Reynolds numbers
between 100 and 1,000 are of interest, which implies a nominal laminar flow, and
therefore low heat transfer coefficients. One way of improving the performance of a
plane channel is to introduce vortex generators, which periodically mix the flow and
reduce the thermal boundary layer thickness. This includes longitudinal vortex
generators in the form of winglets and delta wings, transverse vortex generators as
cylinders, rectangular bars, grooved channels, ribs and fins. Fiebig (1997) reviewed the
application of vortex generators in compact heat exchangers. Two-dimensional flow in
a plane channel with in-line mounted rectangular bars to the approaching flow is
considered in the present investigation. The bars induce unsteady transverse vortices
to augment fluid mixing. These vortices have their axes transverse to the flow and are
consistent with two-dimensional flow.

Suzuki et al. (1993) computed the flow around a square bar in a channel for bar
Reynolds numbers ranging from 37.5 to 150 and bar heights ranging from 0.05 to 0.5
channel height. The computation reveals that vortex shedding shows a different
pattern of motion from its counterpart formed behind a bar placed in a uniform flow.
The bar height is indicated to be a major factor governing the conditions for the
appearance of crisscross motion of the vortex. Breuer et al. (2000) presented accurate
computations of the unsteady flow around a square bar of height d=H ¼ 1=8
mounted in a plane channel, they calculated the critical Reynolds number based on
bar height for onset of vortex shedding from the bar at Re ¼ 40: Saha et al. (2000)
reported the transition to chaos in two-dimensional flow around a square bar, the
flow undergoes a sequence of transitions from a steady pattern with a Reynolds
number of 40 to an unsteady chaotic pattern with a Reynolds number of 600, for this
reason the simulations in the present work were carried out for bar Reynolds number
Red # 400:

The aerodynamic stability of the downstream of two tandem square bars was
investigated by Luo et al. (1999) for a Reynolds number of 2:52 £ 104; they showed that
for streamwise spacing between the centers of the two square bars L=d # 4 the
associated turbulent flow structure between the bars is reattached and the downstream
bar is subjected to a negative drag. Tatsutani et al. (1993) studied tandem of square
bars in a channel for Reynolds numbers between 200 and 1,600 based on the
downstream bar height. They observed distinct flow patterns that are dependent on a

critical non-dimensional inter-bar spacing, lc, given by lc ¼ 168 Re
22=3
d : Below the

critical spacing, two counter-rotating eddies formed in the gap between the square bars
and vortex shedding was only observed for the downstream bar. At the critical
spacing, eddy shedding was initiated for the upstream bar. A numerical investigation
was conducted by Rosales et al. (2001) to analyze the unsteady flow field and heat
transfer characteristics for a tandem pair of square bars in a laminar channel flow.

uB ¼ non-dimensional bulk temperature
uw ¼ non-dimensional channel wall

temperature
n ¼ kinematic viscosity

t ¼ non-dimensional time, tU0/H
tw ¼ wall shear stress
Dt ¼ computational time step
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They studied drag, lift and heat transfer coefficients from the downstream heated bar
due to inline and offset eddy-promoting bars. The results show that the drag coefficient
and bar Nusselt number decrease as the heated bar approaches the wall.

Valencia (1998) presented numerical studies of the flow and heat transfer in a
channel with a built-in tandem of two rectangular bars. Data are presented for channel
Reynolds numbers ranging from 100 to 400, and longitudinal bar separation distances
L/d ranging from 3 to 9. The key conclusion is that for longitudinal bar separation
distances L=d $ 5 the mean heat transfer enhancement is constant. Valencia (1999)
studied unsteady flow and heat transfer in plane channels with periodically placed
rectangular bars of height 0.5H on the channel axis and quantified the benefits of
vortex shedding for pitches of 2.25H, 4.25H and 6.25H. Calculations were performed for
Re¼100-400 ranging from steady laminar to unsteady transitional flow. A comparison
of the mean Nusselt number as a function of the pumping power for the three
configurations shows that for the same pumping power the heat transfer is the highest
with the pitch 2.25H.

Farhanieh et al. (1993) showed, with a experimental and numerical investigation for
a plane channel with a grooved wall in the thermal entrance region, that local heat
transfer distribution around the third and fourth groove were similar, for the
investigated Reynolds number ranging from 100 to 1,760. Experimental determination
of row-by-row heat transfer coefficients in offset-strip geometries for Reynolds
numbers between 300 and 4,000 were made by Dejong and Jacobi (1997), they showed
similar heat transfer rates after the fourth row. In a recent work, Comini et al. (2002)
computed convective heat transfer in wavy channels in the entrance and in the fully
developed region. The computed flow and temperature fields in the 15th half module
was qualitatively similar to the unsteady flow and temperature fields computed in the
fully developed region, however, the difference on mean Nusselt numbers was around
20 percent for Reynolds number of 1,000.

The current work is a two-dimensional numerical investigation of heat transfer in a
plane channel with six in-line mounted rectangular bars in the thermal entrance region,
and in the fully developed region with the bars repeated in a spatially periodic fashion.
Six bar sizes have been computed and the influence of Re has been studied in detail for
the case d=H ¼ 0:4 in the range of 100 # Re # 1; 000: The objectives of the present
work are to study the fluid flow and heat transfer in a channel with periodically
mounted transverse vortex generators, and we want to quantify also the differences on
mean Nusselt number and friction factor calculated with periodic boundary conditions
(PBC) compared with the corresponding calculated after the fifth row.

2. Mathematical model and geometry
The flow is assumed to be unsteady, two-dimensional and laminar. The conservation
equations describing the flow and temperature fields are the continuity, the
time-dependent Navier-Stokes equations, and the energy equation. The fluid is
assumed to be Newtonian with constant properties and the dissipation terms in the
energy equation are neglected. The governing non-dimensional equations are

›U

›X
þ

›V

›Y
¼ 0 ð1Þ
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Re Pr

›2u

›X 2
þ

›2u

›Y 2

� �
ð4Þ

The velocities were non-dimensionalized with the mean velocity U0, all lengths with
the channel height H, the pressure with rU0

2, the temperature with the reference
temperature T0, and time with H/U0. The channel Reynolds number Re is defined as
U0H/n. Pr is the Prandtl number of the fluid, and in this study we take Pr ¼ 0:71
corresponding to air.

In the analysis of the thermal entrance region, we specify fully developed velocity
profile as inlet velocity in the channel. The fluid temperature at the inlet is constant.
The exit boundary conditions are chosen to minimize the distortion of the unsteady
vortices shed from the bars and to reduce perturbations that reflect back into the
domain. We found that the wave equation was more compatible that setting the first
derivatives in the axial direction equal to zero with the physics at the exit plane, i.e.

›f

›t
þ U 0

›f

›x
¼ 0 ð5Þ

where the variable f represents the independent variable U, V, or u. Equation (5) is
enforced at the exit plane for the momentum and energy equations, equations (2)-(4).

For the simulation of fully developed periodic flow, we assume periodicity of the
solution over one basic unit and therefore the computational geometry is limited to this
basic unit. Implicit in this treatment is the assumption that the flow is fully developed,
both hydrodynamically and thermally. To enable PBC, the instantaneous
non-dimensional pressure in the Navier Stokes equations (2) and (3) is decomposed
into a mean part b that is assumed to vary linearly in X, and a fluctuating part P 0 that
vary in X and Y, (Patankar et al., 1977). Thus,

PðX ;Y ; tÞ ¼ 2bðtÞX þ P 0ðX ;Y ; tÞ ð6Þ

The mean pressure gradient b is adjusted every time step to satisfy the fixed mass
flow condition. PBC are imposed on velocities and on the fluctuating part of the
pressure.

For the periodic thermally developed domain with uniform channel walls
temperature Tw as boundary condition, the temperature difference:

uð0;Y ; tÞ2 uW

uBð0Þ2 uW
¼

uðP=H ; tÞ2 uW

uBðP=H ; tÞ2 uW
ð7Þ

can be considered to be periodic along the non-dimensional x-direction. The periodicity
condition (7) enables the solution domain for the temperature problem limited to the
longitudinal pitch P/H. The non-dimensional bulk temperature was calculated using
the velocity and the temperature distribution with the equation:
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uBðX ; tÞ ¼

Z 1

0

jU ju dY

Z 1

0

jU j dY

ð8Þ

Instantaneous local heat transfer will be expressed in terms of the local Nusselt number
based on channel height and can be written as:

NuðX ; tÞ ¼
hðx; tÞH

k
¼

ð›u=›Y Þwall

ðuBðX ; tÞ2 uWÞ
ð9Þ

The instantaneous flow losses are evaluated with the friction factor defined as:

b ¼ f ¼ 1=2ðCf1 þ Cf2Þ þ Cd

d

2P
ð10Þ

where Cf1 and Cf2 are the skin friction coefficients on the channel walls, Cd and d are the
drag coefficient and the bar height, respectively.

Figure 1 schematically shows the computational domain. The plane channel has in
the thermal entrance region six in-line mounted rectangular bars with a longitudinal
pitch P ¼ 2H ; the velocity is fully developed in the inlet. The non-dimensional height
of the rectangular bars d/H is varied from 0.24 to 0.48 for a constant channel Reynolds
number Re ¼ 600: For the case with bar height of d=H ¼ 0:40 the channel Reynolds
number is varied from 100 to 1,000, to study the flow behavior from steady laminar to
unsteady transitional flow. The case with bar height d=H ¼ 0:40 in the fully developed
region was simulated with PBC for different Reynolds numbers, to compare the results
of heat transfer and flow losses with the obtained in the sixth row of the previous case.

3. Numerical method
The differential equations introduced above were solved numerically with an iterative
finite-volume method, details of which can be found in the work of Patankar (1980).

Figure 1.
Computational domain
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The convection terms in the equations were approximated using a power-law scheme.
The method uses staggered grids and Cartesian velocity components, handles the
pressure-velocity coupling with the SIMPLEC algorithm in the form given by Van
Doormaal and Raithby (1984), and solves the resulting system of equations iteratively
with a tridiagonal-matrix algorithm. A first-order accurate explicit method was used
for time discretization in connection with a small time step Dt ¼ DtU 0=H ¼ 0:001 to
capture the complex unsteady flow with a grid size of 1; 200 £ 100 control volumes for
the entrance region, and with a grid size of 200 £ 100 control volumes for the fully
developed region. The time step satisfied the Courant condition, C ¼ 0:15:

To check grid independence, numerical simulations of unsteady flow and heat
transfer for the thermal entrance case with six in-line mounted rectangular bars of
height d=H ¼ 0:4 for channel Reynolds number of Re ¼ 600 were performed on grids
of 960 £ 80; 1; 200 £ 100; 1; 440 £ 120 and 1; 680 £ 140 control volumes. The
calculation with the different grid sizes were performed with different time steps, in
such a way that the Courant number of the flow was constant C ¼ 0:15: Values of
integral parameters as the Strouhal number of the flow, mean drag coefficients,
fluctuation of lift coefficients, friction factor and mean Nusselt number on the channel
walls were compared for the four different grid sizes. With the grid of 1; 200 £ 100
control volumes the differences in all the integral parameters compared with the grid of
1; 680 £ 140 control volumes were smaller than 5.0 per cent. Therefore, the grid of
1; 200 £ 100 control volumes with the time step of 0.001 will be used for the simulation
of the unsteady laminar flow in the channel with in-line mounted rectangular bars.

A typical run of 8 £ 104 time steps with 1; 202 £ 102 grid points takes about 72 h on
a personal computer with a Pentium IV processor. To determine mean values the
program should be run until a unsteady but periodic state is reached, and then the
values of all fields in each 1/16 of one period are saved.

4. Results and discussion
The structure of the flow in the unsteady transitional regime will first be discussed. It
can be illustrated through the use of the instantaneous velocity vectors. Figure 2 shows
an instantaneous map of velocity vectors for the case d=H ¼ 0:4 and Re ¼ 600: One
can notice unsteady transverse vortices generated in the channel due to the bars, and
after the third bar also unsteady vortices were found near the walls. The unsteady
vortices mix core fluid with near wall fluid. The Karman vortex sheets are shed from
the downstream face of the bars and travel through the channel, washing across the
upstream face of the next bars. Thus, the upstream face of the bars are exposed to a
periodically-induced flushing. For Re $ 600 and d=H ¼ 0:4; two counter-rotating
eddies formed in the gap between the first and second rectangular bars, and vortex
shedding were only observed from the second bar.

Figure 3 shows a comparison of instantaneous velocity vectors and isotherms
around the sixth bar in the thermal entrance region with instantaneous velocity vectors
and isotherms calculated with PBC at the same time for the case d=H ¼ 0:4 and
Re ¼ 600: The qualitative agreement between both solutions on velocity and
temperature fields is very well for this unsteady transitional flow with more than one
frequency present in the flow. The Strouhal number calculated after the sixth bar in the
thermal entrance case was S ¼ 0:357; and the corresponding calculated with PBC was
S ¼ 0:368 for the dominant frequency.
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The critical Reynolds number for onset of unsteady vortex shedding around the bars in
the case with six rectangular bars of height d=H ¼ 0:4 mounted in the channel was
determined with the amplitude of oscillation of lift coefficient in each bar for different
channel Reynolds numbers. For Re ¼ 100; the flow was steady with recirculation
region after each bar. For Re ¼ 125; only the lift coefficient of the sixth bar oscillates
with a amplitude of 0.001 and without vortex shedding. For the critical channel
Reynolds number of 150 ðRed ¼ 60Þ; vortex shedding were observed after the second
bar, the amplitude of lift coefficient varied from 0.05 to 2.6 for the first and last bar
respectively, and the Strouhal number was 0.39. From Re ¼ 175 vortex shedding were
observed after each bar, the amplitude of lift coefficient varied from 0.55 to 6.0 for the
first and last bar, respectively, and the Strouhal number was 0.391. With an increase of
Reynolds number until Re ¼ 200; the amplitude of lift coefficient increased from 0.76
to 7.6 for the first and last bar, respectively, and the Strouhal number was 0.396. The
critical Reynolds number and the Strouhal number increase with the blockage ratio,
and in this case this parameter is more than three times greater than the used one by
Breuer et al. (2000).

Drag coefficient for the six bars in the entrance region, and drag coefficient
calculated with PBC as function of channel Reynolds number are shown for d=H ¼ 0:4

Figure 2.
Instantaneous maps of
velocity vectors around
the six bars for the case of
d/H ¼ 0.4, Re ¼ 600 in the
thermal entrance region
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Figure 3.
Instantaneous velocity
vectors and isotherms

(a) around the sixth bar
in the thermal entrance

region and (b) calculated
with PBC at the same time

(d/H ¼ 0.4, Re ¼ 600)
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in Figure 4. The change of flow mode between the first and second bar for Re . 500
diminishes the drag coefficient of the second and third bars. The drag coefficient of a
rectangular bar calculated with PBC is lower than the corresponding value for the sixth
bar in the entrance region, and the difference increases with Re. The effects of bar
height on drag coefficient for the six bars with Re ¼ 600 shows Figure 5. As it is
expected, the drag coefficient for the first bar increases with d/H, again the change of
flow mode between the first and second bar for d=H . 0:36 diminishes the drag
coefficient of the second and third bars. In the case with d=H ¼ 0:48; two
counter-rotating eddies formed in the gaps between all bars, and vortex shedding were
not observed in the channel, therefore, the drag coefficient for all bars was almost the
same.

Figure 6 shows time averaged local Nusselt numbers on heated channel wall for
three Reynolds numbers. The local Nusselt number distributions around the fifth
ð8 # x=H # 10Þ; and sixth bar, ð10 # x=H # 12Þ; are practically equal, this indicates
thermal fully developed conditions after four bars. For the case with vortex shedding
after the first bar ðRe ¼ 500Þ; local Nusselt numbers for 2 # x=H # 6 are higher than
without vortex shedding after the first bar ðRe . 500Þ: The effects of bar height on
local Nusselt number distributions on heated channel wall for Re ¼ 600 are shown in
Figure 7. As it is expected, the Nusselt number for the first row increases with d/H.
Besides in the case of d=H ¼ 0:4; the flow without vortex shedding after the first bar
generates low local Nusselt numbers for 2 # x=H # 6: In the case of d=H ¼ 0:48 and
Re ¼ 600 as it was mentioned earlier, vortex shedding were not observed in the
channel, and therefore local Nusselt numbers were very low.

Figure 4.
Mean drag coefficients for
the six bars as function of
Reynolds number
(d/H ¼ 0.4)
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Figure 5.
Mean drag coefficients for
the six bars as function of

bar height (Re ¼ 600)

Figure 6.
Time averaged local

Nusselt number on
channel wall for three

different Reynolds
numbers (d/H ¼ 0.4)
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Mean Nusselt number enhancement and friction factor increases as function of d/H, for
the case Re ¼ 600; are shown in Figure 8. The values obtained with d=H ¼ 0:48 are
very low, as in this case vortex shedding was suppressed. The heat transfer
enhancement is about a factor 5.5 with friction factor increases of 57 for the case
d=H ¼ 0:44: Figure 9 shows mean heat transfer enhancement and friction factor
increases as function of Re with d=H ¼ 0:4: The influence of unsteady vortex
shedding on mean heat transfer is more important than only flow deviation around the
bars for high Re. The computed values with PBC are also shown, the differences
between heat transfer and pressure drop obtained with thermal entrance conditions
and with PBC increase with Re. For steady flow, Re ¼ 100; both predictions are equal.
For Re ¼ 200; unsteady laminar flow, also both predictions match very well. From
Re ¼ 300 PBC predict lower heat transfer and pressure drop than calculated with the
thermal entrance model after the fifth bar.

One can make a comparison of mean heat transfer between a channel with in-line
periodically mounted rectangular bars and a plane channel with fully developed
turbulent flow as a function of non-dimensional pumping power f Re3. The channel
with mounted bars requires quite less pumping power than turbulent flow to achieve
the same heat transport rates, because these unsteady transverse vortices yield less
viscous dissipation than random chaotic turbulent fluctuations. The optimal cases are
the arrangements with bar height d/H of 0.4 and 0.44.

Conclusions
Two-dimensional simulations of heat and momentum transport in a plane channel with
six in-line mounted rectangular bars in the thermal entrance region, and with spatially

Figure 7.
Time averaged local
Nusselt number on
channel wall for four
different bar heights
(Re ¼ 600)
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Figure 8.
Mean Nusselt number

enhancement and friction
factor increases as

function of bar height
(Re ¼ 600)

Figure 9.
Mean Nusselt number

enhancement and friction
factor increases as

function of Reynolds
number (d/H ¼ 0.4)
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periodic rectangular bars were performed using the finite volume technique for the
channel Reynolds number range 100 # Re # 1; 000; and for different bar heights.
Steady flow and unsteady laminar flow as well as complex unsteady flow with
transitional character depend on the Reynolds number and bar height. For high
Reynolds numbers, the Nusselt number and friction factor calculated for the sixth row
were higher than those obtained with PBC. The performance of the configuration was
very sensitive to the choice of bar height and Reynolds number.
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